

0

Webinar 01/2023 DYNAMIC TRANSITION TO CONDITION BASED MAINTENANCE PHILOSOPHY : A PROSPECTIVE ANALYSIS

Organised by: Marine, Hull, Chemical and Process Engineering, Material Science and Naval Architecture Sectional Committee

Introduction to CBM

CBM Evolution in SLN

CBM Techniques

Integrated CBM Techniques

Prospective Analysis of CBM against PPM

INTRODUCTION

SLN followed Planned Preventive Maintenance (PPM) over last years for all ship borne & shore based machinery

PPM of SLN needed an urgent review

Aged procedures to be revised based on the findings from an own comprehensive data base

Transition from PPM to widely practiced Condition Based Maintenance (CBM)

Balancing cost reduction & efficiency improvement targets are vital needs

CONDITION BASED MAINTENANCE (CBM)

CBM or Predictive Maintenance (PdM) is a strategy that drives to identify incipient faults before they become critical which enables more accurate planning.

Source : K Mobley (2002)

SLN MAINTENANCE PHILOSOPHY

THE PARADIGM TRANSITION

SLN Hybrid Maintenance Model

PPM (Planned Preventive Maintenance)

Preventive

CBM (Condition Based Maintenance)

Predictive

CBM Phase I Commenced

2012

2019

CBM Phase II Commenced 2030 Complete Transition to CBM

1957

CBM CAPABILITY OF MTTU

A Total CBM Solution

TECHNIQUE	AVAILABILITY	
Vibration Analysis	\checkmark	
Ultrasonic noise analysis	\checkmark	
Oil Wear Down Analysis	\checkmark	
Oil testing	\checkmark	
Thermography	\checkmark	
Non Destructive Testing	\checkmark	

Source : SLN BR 31 (2021)

P-F CURVE & CBM APPLICATIONS

CBM TECHNIQUES

"VIBRATION IS THE MOTION OF A BODY ABOUT A REFERENCE POINT CAUSED BY AN UNDESIRABLE MECHANICAL FORCE"

Applications

- Rolling element defects
- Mass unbalance
- > Misalignment
- Mechanical looseness
- Defects with gears

> Vibration Analysers

Trend Analysis

🛍 #21 «RI 31 30 TS» Op	eration					X					
💽 List of measurements 🚙 🍙 Vibr	ation & Process	Oil Pictures	Diag./Reco.	Actions	Archives	6					
O On-line 💛 🔰			Paramet	ers and	Signals St	tatus Screen					
Bates Advice 💌 Ope	rating	S RI34									
14/06/2010 16:09:56	ameters	3.14									
T 14/06/2010 14:28:43	Filter (All (Others 🔽 Ha	ard 🔽 Soft	🔽 Inhib	ited 🔽 Not m	onitored					
T 14/06/2010 13:56:23	B	h31 CC Ash30 C									
F 14/06/2010 13:50:29 PSS	Acceleration 20	0.042 0.118				-					
12/06/2010 13:50:29 C 36/05/2010 09:11:49 OL	Vib Vel 2-1000	0.818 2.51									
C 25/05/2010 20:11:48	w Freq Acc OL	0.028 0.070									
24/05/2010 20:11:48 Me	d Freq Acc OL	0.028 0.072									
23/05/2010 08:11:48	h Freq Acc OL	0.013 0.057									
T 22/05/2010 20:11:48 Ku	rtosis	3,28 3.00									
C 21/05/2010 🚝 Trend											
20/05/2010	2021 22										
19/05/2010 File Display Cursors Para	2010 File Display Cursors Parameters Processing										
	≫ 🔸 + +• ¥ 📋	t <u>tt i ú t</u>	1:1 XPR	(<u>ia</u> i n @	000111	14 k la 😁 📘					
15/05/2010 C6 (04/21/2010 03:57:40.	3.21 Hz)					Delation allowed at 1					
14/05/2010 Hz : RI 31 30 TS	Point fonctionnement	Running speed rl	34 (Hz)		RI 31 30 15						
T 13/05/2010					314H7	2010 23.21.30					
	C3 C4 C	5 rs			C2 02/02/	2010 12:41:43					
L 11/05/2010	THE A				3.21Hz						
		· · · ·			C3 03/10/	2010 07:32:45					
C 08/05/2010					3.21Hz	energen en an					
2-					C4 03/30/	2010 08:15:42					
06/05/2010					3.21Hz	0040 45-55-02					
T 05/05/2010 1					3 31 Hz	2010 15.56.03					
C 04/05/2010					C6 04/21/	2010 03:57:40					
	, , , , , , , , , , , , , , , , , , , 			Day	3.21Hz						
01/02/2010 23:10:4	ħ.		06/14/2010	16:09:56							
Measurer Parc Equipements W1_Press	section/RI 31 30 TS				-	7					
Point fonctionnementR-+04	5										

> Spectrum Analysis

Comparison of Vibration spectrums Gearbox Free Ends

2017 (past records) to 2020 (Defect stage)

Standard Spectrum Plot for Imbalance

Observations upon Dismantling

- Port Coupling sheared off
- Stbd Coupling needs
 dynamic balancing

SAFE OPERATIONAL CRITERIA FOR SLN

All								
	400 rj	pm	770 rp	om	1050 rpm			
	Average	Alarm	Average	Alarm	Average	Alarm		
Gear Box	0.20	1	0.92	2	1.61	3		
Main Engine	1.66	4	5.12	8	9.20	16		
P/block	0.10	1	0.38	2	0.54	4		
Shaft seal	0.08	0.5	0.32	1	0.47	2		
Stern tube	0.11	0.5	0.78	1	1.67	2		
A Bracket	0.35	1	0.72	1	0.78	2		
Rudder top	0.24	1	0.86	2	1.45	3		

Category 1 - Advanced Off Shore Patrol Vessel (AOPV)

BASIC OIL ANALYSIS

Health assessment of oil

> WEAR DOWN ANALYSIS

Health assessment of machinery

> Oil Wear Down Analysis (WDA)

iCAP 7200 ICP-OES Radial Oil Spectrometer, USA

		Fresh	P	ort Main Eng	ine	Stb	d Main Eng	ine
		Oil						
		Sample						
Oil F	Running Hrs	-	372.40	28.30	87.00	372.40	28.30	99.00
Total R M	unning Hrs of lachinery	-	20368.30	20397.00	20455.30	20368.05	20396.35	20467.05
Element	Max. Permissible Limit							
Fe	80	< 1.000	8.026	2.925	7.278	9.407	2.294	8.974
Cr	10	< 1.000	1.243	< 1.000	< 1.000	1.044	< 1.000	< 1.000
Si	15	< 1.000	< 1.000	< 1.000	4.918	< 1.000	< 1.000	6.215
Al	20	< 1.000	< 1.000	< 1.000	2.746	< 1.000	< 1.000	3.521
Pb	20	< 1.000	< 1.000	< 1.000	< 1.000	4.569	1.059	1.504
<mark>Cu</mark>	<mark>25</mark>	<mark>< 1.000</mark>	<mark>58.069</mark>	<mark>15.901</mark>	<mark>32.860</mark>	<mark>95.370</mark>	<mark>16.343</mark>	<mark>55.159</mark>
Sn	10	< 1.000	< 1.000	1.001	1.916	< 1.000	1.548	2.896
Ni	10	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000

Elemental Concentration as per ASTM D 5185 (ppm)

Observations after Dismantling

- a. Metal particles in lub oil sumps.
- b. Port crankshaft inner stop ring (thrust ring) worn out and cracked.
- c. Stbd crank shaft inner stop ring worn out.
- d. All main bearings of both M/Es slightly scrapped and edges sharpened.

Basic Oil Acceptance Testing

- Kinematic Viscosity ASTM D 445
- Water Content ASTM D 95
- TAN/ TBN Test ASTM D 2896/ D 4379
- Drop Test (Blotter Paper) ASTM D 7899
- Flash Point ASTM D 92
- Insolubles ASTM D 893

Drop Test (Blotter Paper) as per - ASTM D 7899

Kinematic Viscosity Testing as per - ASTM D 445 Total Base Number Testing as per - ASTM D 2896/4739

Insoluble Testing Centrifuge As per – ASTM D 893

Water Content Tester As per – ASTM D 95

"INFRARED RADIATION (IR) IS NOT DETECTABLE BY THE HUMAN EYE, AN IR CAMERA CAN CONVERT IT TO A VISUAL IMAGE THAT DEPICTS THERMAL VARIATIONS ACROSS AN OBJECT OR SCENE"

Applications Mechanical Inspection Electrical Inspection

www.cmetsl.lk

VISIBLE LIGHT IMAGE OF MARINE GEAR BOX

18-09-18 04:54:27 55 °C THERMAL IMAGE OF SHAFT BEARING

THERMAL IMAGE OF MARINE GEAR BOX

100 90 80

INFRARED THERMAL IMAGE

26

VISIBLE LIGHT IMAGE

INFRARED THERMAL IMAGE

VISIBLE LIGHT IMAGE

INFRARED THERMAL IMAGE

VISIBLE LIGHT IMAGE

ENGINE DYNAMIC TESTING

- Amplitude demodulation
- Constant bandwidth analysis
- > Octave band analysis
- Peak value (peak value) analysis
- Proximity analysis
- > Spike energy
- > Time synchronous averaging analysis

ULTRASOUNDS DETECTION

"ULTRASONIC ANALYSIS HELPS DETECT CHANGES IN SOUND PATTERNS CAUSED BY PROBLEMS SUCH AS WEAR, FATIGUE AND DETERIORATION IN MOVING PARTS"

ULTRASOUNDS DETECTION

Some of applications

Bearing inspection Steam traps inspection Electrical inspections

Defective Bearing

Leakages inspection Valves inspection

Actual Defect (Outer Ring Fractured)

www.cmetsl.lk

ULTRASOUNDS DETECTION

Laser Alignment
 Dynamic Balancing
 Non Destructive Testing

Laser Alignment

Diagnosis of a Misalignment Through Vibration analysis & Integrate using Alignment

Before Alignment

After Alignment

> Dynamic Balancing

Diagnosis of Rotor Unbalance through Vibration Analysis & Use integrated Balancer Module

Vibration(mm/s)

Vibration values are decreased on after dynamic balancing

Before Balancing After Balancing 51.72 mm/s 4.61 mm/s

> Non Destructive Testing

- Visual testing
- Liquid penetrant testing
- Magnetic particle testing
- Ultrasonic testing
- Eddy current testing
- Radiography testing

UT

LPT

ET

PROSPECTIVE ANALYSIS OF CBM TECHNIQUES

COST EFFECTIVENESS OF CBM

EFFECTIVENESS OF CBM

REGRESSION ANALYSIS METHOD

QUANTITATIVE ANALYSIS Cost & ROIs of CBM Programme – VA Section

QUANTITATIVE ANALYSIS Cost & ROIs of CBM Programme – Oil Section

QUANTITATIVE ANALYSIS Cost & ROIs of CBM Programme – NDT Section

QUANTITATIVE ANALYSIS

Cost & ROIs of CBM Programme – Combined solutions

	YEAR 2018	YEAR 2019	YEAR 2020	YEAR 2021					
Training Cost (Staff)	80,000.00*	800,000.00*	2,400,000.00*	50,000.00*					
Total Training Cost		3,330,000.00*							
Total ROI	-	-	725,000.00	9,883,000.00					
*- Approximate value									

COST BENEFIT ANALYSIS (CBA)

• CBA is a policy assessment method that quantifies in monetary terms the value of all consequences of a policy to all members of society.

NET BENEFIT DECISION RULE

• It is the thumb rule to adopt all sub policies (projects) that have positive net benefits.

Sub CBM Programmes	Initial Cost Involvement	Return On Investment	Net Benefit	В	enefit/ Cost	1.938 6.702		
VA Programme	39,834,257.35	306,789,900.00	266,955,642.65		6.702	4.837 OA INDT I Total CBM		
OA Programme	5,233,786.33	20,590,000.00	15,356,213.67		2.934	2.934		
NDŤ	3,212,327.63	18,751,000.00	15,538,672.37		4.837			
Programme						Benefit Distribution Share		
Total CBM	3,330,000.00	9,883,000.00	6,553,000.00		1.968			
Programme								
Choosing Efficient Projects & Use of Net Benefits versus Benefit/ Cost								

Source : D Weimer (2017)

PARETO EFFICIENCY

- As a distinction among maintenance theories (here between PPM & CBM) Pareto efficiency (or Pareto optimality), is used to evaluate or compare different allocations of resources.
- Pareto says a system can not be improved without disturbing the other.

QUALITATIVE ANALYSIS

Survey using Google Forms – 144 Personnel

Target group	Sample
Top Management	16
CBM operators	25
End users	103

Sample weightage

THREE QUESTIONNAIRES (SURVEY)

CBM Operators

Physical effectiveness (Job satisfaction)

Physical effectiveness (knowledge transfer)

Physical effectiveness (Financial - by individual perception)

WEIGHTED MATRIX

Ex : Q7	Effectiveness in implementation of CBM in phases?							
	a. Excellent	b. Good	c. Average	d. Need	e. Poor			
				improvement				
Weightage	CBM	CBM	CBM	CBM				
	4	3	2	1				
			PPM	PPM	PPM			
			1	3	4			

Source : S Hanley (1993)

1	Timestamp	Name	Level of implementation of	Your perception on the a	The level of SLN staff re	Present level of defect d	Rate of meeting deadline	e Cost benefit projection a	Effectiveness in impleme	Rate of knowledge trans	Rate of technology trar	
2	2/8/2022 21:20:12	Cmde Joseph	c. Average	b. Good	c. Average	b. Good	d. Need improvement	d. Need improvement	c. Average	b. Good	b. Good	
3	2/9/2022 14:21:20	SLNS Dakshina	b. Good	c. Average	c. Average	b. Good	b. Good	b. Good	b. Good	c. Average	c. Average	
4	2/10/2022 4:31:13	KMD Seneviratne	d. Need improvement	c. Average	c. Average	c. Average	c. Average	c. Average	c. Average	c. Average	d. Need improvement	
5	2/16/2022 23:10:07	SLNS RANGALLA	a. Excellent	b. Good	b. Good	a. Excellent	b. Good	b. Good	b. Good	a. Excellent	a. Excellent	
6	2/18/2022 8:30:14	HUNNADENIYAGE CHAN	c. Average	b. Good	c. Average	b. Good	d. Need improvement	c. Average	c. Average	e. Poor	b. Good	1
7	2/18/2022 8:56:57	Kad siriwardana	e. Poor	a. Excellent	b. Good	b. Good	d. Need improvement	c. Average	e. Poor	c. Average	c. Average	
8	2/18/2022 13:56:52	Gihan Kavinda	d. Need improvement	c. Average	b. Good	d. Need improvement	d. Need improvement	c. Average	d. Need improvement	c. Average	c. Average	
9	2/18/2022 14:06:17	Naval dockyard trincoma	c. Average	e. Poor	e. Poor	e. Poor	d. Need improvement	d. Need improvement	c. Average	e. Poor	e. Poor	
10	2/18/2022 14:07:00	WGDL Wedikkaragedara	e. Poor	d. Need improvement	e. Poor	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	
11	2/18/2022 14:08:39	Navdock	c. Average	b. Good	d. Need improvement	d. Need improvement	c. Average	d. Need improvement	d. Need improvement	c. Average	c. Average	
12	2/18/2022 14:09:21	NAVDOCK	c. Average	d. Need improvement	c. Average	b. Good	c. Average	b. Good	b. Good	b. Good	d. Need improvement	
13	2/18/2022 14:09:47	Naval Dockyard, Trincom	e. Poor	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	
14	2/18/2022 14:10:07	NAVDOCK	c. Average	b. Good	c. Average	c. Average	c. Average	c. Average	c. Average	d. Need improvement	d. Need improvement	Ι.
15	2/18/2022 14:10:50	SLN DOCKYARD	b. Good	c. Average	c. Average	b. Good	c. Average	b. Good	b. Good	b. Good	b. Good	
16	2/18/2022 14:13:27	SLN navdock	b. Good	b. Good	b. Good	b. Good	c. Average	b. Good	b. Good	b. Good	c. Average	
17	2/18/2022 14:21:39	SLN Dockyard	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	d. Need improvement	c. Average	

54

1	Timestamp	Email Address	Name	Base	Level of work efficiency in	Level of ROI of all CBM n	Level of cooperation ren	Level of knowledge trans	Level of credibility on CB	Extent of support
2	2/2/2022 2:38:39	shirleypriyashantha6@g	TAS Priyashantha	SLNS Thakshila	a. Excellent	a. Excellent	b. Good	a. Excellent	a. Excellent	a. Excellent
3	2/8/2022 17:32:25	kushanchandimal15@g	K k chandimal	SLNS Thakshila	b. Good	a. Excellent	b. Good	a. Excellent	b. Good	a. Excellent
4	2/8/2022 17:35:51	samanthakumara56@gi	SDSK Sesath	SLNS Thakshila	b. Good	a. Excellent	a. Excellent	b. Good	b. Good	b. Good
5	2/8/2022 18:47:22	eanushkadamith@gmai	Edirisinghe	Thakshila	a. Excellent	b. Good	b. Good	a. Excellent	a. Excellent	a. Excellent
6	2/9/2022 1:08:08	sujithudayanga7@gmail	APS Udayanga	SLNS Thakshila	a. Excellent	b. Good	b. Good	a. Excellent	b. Good	a. Excellent
7	2/9/2022 15:37:44	ngnp.eng76@gmail.com	NGNP wickramarathna	Sins thakshila	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
8	2/9/2022 15:40:07	rdeshapriya56@gmail.co	GWR Deshappriya	SLNS Thakshila	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
9	2/9/2022 15:44:59	kushanchandimal15@g	K k chandimal	Sins thakshila	b. Good	c. Average	a. Excellent	c. Average	a. Excellent	a. Excellent
10	2/9/2022 15:45:33	prasadwelikala93@gma	wvdpu welikala	SLNS thakshila	b. Good	b. Good	b. Good	b. Good	b. Good	b. Good
11	2/9/2022 15:49:35	sujithudayanga7@gmail	APS Udayanga	SLNS Thakshila	a. Excellent	b. Good	b. Good	a. Excellent	a. Excellent	a. Excellent
12	2/9/2022 15:56:46	dineshskdc@gmail.com	Skdc jayarathne	Thakshila	a. Excellent	b. Good	b. Good	b. Good	b. Good	b. Good
13	2/9/2022 16:30:03	sanjayasandaruwan95@	PS Sandaruwan	SLNS Nandimithra	b. Good	b. Good	b. Good	c. Average	a. Excellent	a. Excellent
14	2/9/2022 17:04:51	wmssweerasinghe@gm	Sampath Weerasinghe	SLN Dockyard	a. Excellent	a. Excellent	b. Good	b. Good	a. Excellent	a. Excellent
15	2/9/2022 19:56:34	ae107409@gmail.com	DSL weerasinghe	SLNS Thakshila	b. Good	b. Good	d. Need improvement	c. Average	b. Good	d. Need improver
16	2/10/2022 8:55:49	aththanayaka56717@gn	Ac Aththanayaka	Sin dockyard	a. Excellent	b. Good	b. Good	a. Excellent	a. Excellent	a. Excellent
17	2/10/2022 9:11:11	harshamadushan27@g	WPHM KARUNARATHNA	Thakshila	b. Good	b. Good	c. Average	b. Good	b. Good	b. Good
18	2/10/2022 11:25:23	jmrmjayasundara5@gm	JMRM Jayasundara	SLNS Thakshila	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
19	2/11/2022 16:02:28	Chamindatmk@gmail.co	Ac Aththanayaka	Sin dockyard	a. Excellent	b. Good	b. Good	a. Excellent	a. Excellent	a. Excellent
20	2/11/2022 16:05:33	rajendranpriyatharan@g	Rajendran Priyatharan	Navdock	b. Good	b. Good	b. Good	b. Good	b. Good	b. Good
21	2/11/2022 16:09:30	aththanayaka56717@gn	APC Attanayaka	SLN Dockyard	b. Good	a. Excellent	b. Good	a. Excellent	b. Good	a. Excellent
22	2/11/2022 16:17:28	sumithchandrarathna@g	PS Chandrarathna	P485	b. Good	b. Good	b. Good	b. Good	b. Good	b. Good
23	2/11/2022 16:20:11	spnnnayanajith@gmail.c	Spnn nayanajith	Sins thakshila	b. Good	b. Good	b. Good	b. Good	b. Good	b. Good
24	2/11/2022 16:24:06	randikachami@gmail.co	WARS Weerarathna	SLNS Sindurala	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
25	2/11/2022 22:05:29	kasunvd@gmail.com	DMK Vimukthi	SLN Dockyard	a. Excellent	a. Excellent	b. Good	a. Excellent	b. Good	b. Good
26	2/17/2022 17:33:48	clementsci38@gmail.co	Chamila Ishan Clement:	Thakshila	a. Excellent	b. Good	b. Good	b. Good	a. Excellent	a. Excellent

CBM Operators

Sample

25

1		Level of knowledge pos	Level of knowledge gain	Level of cooperation ren	Level of knowledge tra	52	Thakshila	a. Excellent	b. Good	b. Good	b. Good	b. Good
2	SLNS Thakshila	a. Excellent	a. Excellent	a. Excellent	a. Excellent	53	SLNS Mahasen	b. Good	b. Good	b. Good	b. Good	a. Excellent
3	Thakshila	a. Excellent	b. Good	a. Excellent	b. Good	54	SLNS Pandukabaya	c. Average	c. Average	a. Excellent	a. Excellent	a. Excellent
4	Parakrama	b. Good	b. Good	b. Good	b. Good	55	NMA	d. Need improvement	c. Average	No experience	c. Average	c. Average
5	SLNS Thammanna	c. Average	c. Average	a. Excellent	b. Good	56	Sins thakshila	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
6	SLNS Mahasen	c. Average	c. Average	b. Good	b. Good	57	Sins thakshila mttu	b. Good	b. Good	b. Good	b. Good	b. Good
7	SLNS PARAKRAMA	c. Average	c. Average	b. Good	b. Good	58	Thakshila	a. Excellent	b. Good	a. Excellent	a. Excellent	a. Excellent
8	INS Shivaji	c. Average	c. Average	b. Good	c. Average	59	Sins thakshila	b. Good	a. Excellent	c. Average	b. Good	a. Excellent
9	Lt Wijesinghe	b. Good	c. Average	b. Good	c. Average	60	SLNS Thakshila	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
10	SLNS Parakrama	b. Good	b. Good	b. Good	b. Good	61	SLNS Thakshila	b. Good	b. Good	b. Good	a. Excellent	b. Good
11	SLN Dockyard	a. Excellent	a. Excellent	b. Good	a. Excellent	62	SLNS Thakshila	b. Good	b. Good	b. Good	b. Good	b. Good
12	SLN Dockyard	b. Good	b. Good	b. Good	b. Good	63	SLNS Mahasen	a. Excellent	a. Excellent	b. Good	b. Good	a. Excellent
13	SLN DOCKYARD	b. Good	a. Excellent	a. Excellent	a. Excellent	64	SLNS Thakshila	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
14	SLNS Uththara	b. Good	b. Good	a. Excellent	b. Good	65	SLNS Rangalla	a. Excellent	a. Excellent	b. Good	a. Excellent	b. Good
15	SLNS Parakrama	c. Average	c. Average	b. Good	a. Excellent	66	SLN Dockyard	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
16	SLNS PARAKRAMA	b. Good	b. Good	b. Good	a. Excellent	67	SLNS Gamunu	b. Good	b. Good	b. Good	b. Good	b. Good
17	SLNS Thakshila	c. Average	b. Good	a. Excellent	b. Good	68	Sayurala	b. Good	b. Good	b. Good	b. Good	b. Good
18	SLNS Parakrama	c. Average	c. Average	b. Good	c. Average	69	SLNS Rangalla	b. Good	a. Excellent	b. Good	a. Excellent	a. Excellent
19	SLNS Thakshila	b. Good	b. Good	b. Good	b. Good	1	-	Level of knowledge pose	Level of knowledge gain	Level of cooperation ren	Level of knowledge tran	To what level your routir
20	INS Shivaji	b. Good	b. Good	b. Good	b. Good	70	SLNS Uththara	b. Good	b. Good	b. Good	b. Good	b. Good
21	SLNS PARAKRAMA	b. Good	c. Average	b. Good	b. Good	71	SLN Dockyard	b. Good	a. Excellent	a. Excellent	a. Excellent	c. Average
22	NMA	a. Excellent	a. Excellent	a. Excellent	d. Need improvement	72	SLNS Dakshina	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
23	Sins thaksia	b. Good	b. Good	b. Good	a. Excellent	73	Gajabahu	a. Excellent	a. Excellent	b. Good	a. Excellent	a. Excellent
24	Thakshila	b. Good	b. Good	b. Good	b. Good	74	SLNS Uththara	a. Excellent	b. Good	b. Good	a. Excellent	b. Good
25	SLNS Parakramabahu	b Good	b Good	a Excellent	h Good	75	SLNS Parakrama	b. Good	a. Excellent	a. Excellent	a. Excellent	a. Excellent
26	SLNS Parakrama	b Good	b. Good	b Good	b. Good	76	Parakramabahu	b. Good	c. Average	b. Good	c. Average	b. Good
27	SLNS Parakrama	b. Good	b. Good	b. Good	b. Good	77	SLNS Sauyrala	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
28	SLNS Parakrama	c Average	c Average	b. Good	b. Good	78	SLNS Dakshina	b. Good	b. Good	b. Good	a. Excellent	b. Good
29	Parakrama	c Average	c Average	h Good	h Good	79	SLNS Ranagaja	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
30	SLNS Parakrama	b Good	h Good	a Excellent	a Excellent	80	Uththara	a. Excellent	b. Good	b. Good	b. Good	b. Good
31	SLNS Parackrama	c Average	a Excellent	h Good	h Good	81	SLNS Gajabahu	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
32	Parakrama	a Excellent	a Excellent	a Excellent	a Excellent	82	SLNS Sayura	a. Excellent	c. Average	b. Good	b. Good	b. Good
32	SLNS Dakehina	e Poor		e Door		83	SLNS kelani	a. Excellent	b. Good	b. Good	b. Good	b. Good
34	INS Shivaii	d Need improvement	e Poor	a Excellent	a Excellent	84	SLNS Gajabahu	a. Excellent	a. Excellent	b. Good	b. Good	b. Good
35	SLN Dockvard	h Good	b Good	a Excellent	h Good	85	SLNS Parakkramabahu	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
33		0.0000	U. 0000		1	86	Dakshina	b. Good	b. Good	b. Good	b. Good	b. Good
1		Level of knowledge pos	Level of knowledge gain	Level of cooperation ren	Level of knowledge tra	87	SLNS Pandukabaya	b. Good	a. Excellent	b. Good	b. Good	c. Average
36	SLNS Rangalla	c. Average	c. Average	b. Good	b. Good	88	P4446	a. Excellent	b. Good	b. Good	a. Excellent	a. Excellent
37	SLNS RANAGAJA	c. Average	b. Good	b. Good	b. Good	89	Parakrama	b. Good	b. Good	b. Good	b. Good	b. Good
38	SLNS Uththara - L 821	c. Average	c. Average	b. Good	b. Good	90	SLNS Samudura	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
39	Dockyard iuc ws	a. Excellent	a. Excellent	a. Excellent	a. Excellent	91	SLNS Jayasagara	b. Good	c. Average	a. Excellent	b. Good	a. Excellent
40	SLN Dockvard	c. Average	b. Good	a. Excellent	a. Excellent	92	SLNS ELARA	b. Good	b. Good	b. Good	b. Good	b. Good
41	Navdock	b. Good	b. Good	b. Good	b. Good	93	SLNS Uththara	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
42	SLNS THAKSHILA	b. Good	b. Good	b. Good	b. Good	94	P 4444	b. Good	b. Good	a. Excellent	a. Excellent	b. Good
43	Savurala	b. Good	b. Good	b. Good	b. Good	95	Ruhuna	b. Good	a. Excellent	b. Good	b. Good	b. Good
44		b Good	b Good	b Good	h Good	96	SLNS Ruhuna	b. Good	b. Good	b. Good	b. Good	b. Good
45	Thammanar	b. Good	b. Good	b. Good	b. Good	97	P 4443	a. Excellent	a. Excellent	b. Good	a. Excellent	a. Excellent
46	SUN DOCKYARD	b Good	b Good	b Good	b Good	98	Sins kashapa	b. Good	a. Excellent	b. Good	b. Good	b. Good
47	SUNS RANAWICKRAMA	h Good	h Good	h Good	b Good	99	SLNS Elara	b. Good	b. Good	b. Good	b. Good	b. Good
48	Navdock	c Average	c Average	c Average	c Average	100	Kashayapa	b. Good	b. Good	b. Good	b. Good	b. Good
40	Wicrama ii	a Excellent	a Excellent	a Excellent	h Good	101	SLNS Nandimithra	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
50	Sine Sindurala	h Good	h Good	h Good	b. Good	102	SLNS Prathapa	b. Good	b. Good	b. Good	a. Excellent	a. Excellent
51	Sine thakeis	b. Good	s. Sood	b. Good	b. Good	103	SLNS Wickrama II	a. Excellent	a. Excellent	a. Excellent	a. Excellent	a. Excellent
51		0.0000		0.0000	0. G000							

-

Sam	ple
10	3

1	1 QUESTIONNAIRE EVALUATION - TOP MANAGEMENT													
2		CBM	PPM	CBM	PPM	CBM	PPM	CBM	PPM	CBM	PPM	CBM	PPM	
3		Q	7											
4	Suggestions on continual development	30	24									30	24	
5		Q	1	Q	2	C	13	Q1	2	Q1	5			
6	Physical effectiveness (Infrastructure)	28	27	34	20	29	24	29	24	31	19	151	119	
7		Q	4	Q	13	Q	14							
8	Physical effectiveness (Job satisfaction)	34	21	40	12	39	13					113	46	
9		Q	8	Q	9	Q	10	Q1	1					
10	Physical effectiveness (knowledge transfer)	30	25	30	25	34	21	34	18			128	89	
11		Q	5	Q	6									
12	Physical effectiveness (Fin- individual perception	26	30	31	23							57	53	
13		a. Ex	b. Gd	c. Avg	d. NI	e. Pr								
14		CBM	CBM	CBM	CBM									
15	5	4	3	2	1									
16	weightage			PPM	PPM	PPM								
17	7 Cample Size : 46			1	3	4								
18	Sample Size : 16						CBM	PPM						
19	Q1	1	3	6	3	3	28	27						
20	Q2	1	6	4	4	1	34	20						
21	Q3		4	7	3	2	29	24						
22	Q4	1	7	2	5	1	34	21						
23	Q5		2	6	8		26	30						
24	Q6		5	5	6		31	23						
25	Q7		5	5	5	1	30	24						
26	Q8	1	4	5	4	2	30	25						
27	Q9	1	3	6	5	1	30	25						
28	Q10	1	7	2	5	1	34	21						
29	Q11		6	6	4		34	18						
30	Q12		3	8	4	1	29	24						
31	Q13	1	9	3	3		40	12						
32	Q14	1	8	4	3		39	13						
33	Q15	1	4	6	3	1	31	19						
34														
14	Weighting Top Mat Weighting CB	M On	Weightin	a End U	ser /	Charts T	on Mat	Char	ts CBM	00	Charts	End Use	r 🗐	4

PEA Calculation Top Management

PEA SUMMARY – TOP MANAGEMENT

1	QUESTIONNAIRE EVALUATION - CBM OPERATORS										
2		CBM	PPM	CBM	PPM	CBM	PPM	CBM	PPM	CBM	PPM
3		C	8	Q	9	Q	12	Q	13		
4	Suggestions on continual development	75	6	79	7	78	8	83	1	315	22
5		G	15	Q	6	Q	11				
6	Physical effectiveness (Infrastructure)	88	0	89	1	83	0			260	1
7		G	1	Q	3	C	7	Q	10		
8	Physical effectiveness (Job satisfaction)	89	0	78	4	82	0	82	1	331	5
9		C	4	Q	14	Q	15				
10	Physical effectiveness (knowledge transfer)	85	3	81	7	82	3			248	13
11		C	2								
12	Physical effectiveness (Fin- individual perception	84	1							84	1
13		a. Ex	b. Gd	c. Avg	d. NI	e. Pr					
14		CBM	CBM	CBM	CBM						
15		4	3	2	1						
16	6 7			PPM	PPM	PPM					
17				1	3	4					
18	Sample Size : 25						CBM	PPM			
19	Q1	14	11				89	0			
20	Q2	10	14	1			84	1			
21	Q3	6	17	1	1		78	4			
22	Q4	13	9	3			85	3			
23	Q5	13	12				88	0			
24	Q6	16	8	1			89	1			
25	Q7	8	16	1			82	0			
26	Q8	5	16	3	1		75	6			
27	Q9	9	13	1	2		79	7			
28	Q10	8	16	1			82	1			
29	Q11	8	17				83	0			
30	Q12	9	12	2	2		78	8			
31	Q13	9	15	1			83	1			
32	Q14	11	12		1	1	81	7			
33	Q15	9	15		1		82	3			
34											
35		_			61						
H -	Weighting Top Mat	M Op 🦰	Weiahtina I	End User	Charts	Top Mat	Charts	CBM op	Charts E	ndUser 🔏	

PEA Calculation CBM Operators

PEA SUMMARY – CBM OPERATORS

1	1 QUESTIONNAIRE EVALUATION - END USERS										
2		CBM	PPM	CBM	PPM	CBM	PPM	CBM	PPM	CBM	PPM
3		Q12		Q13		Q14					
4	Suggestions on continual development	310	37	317	25	310	23			937	85
5		Q6		Q7		Q8		Q11			
6	Physical effectiveness (Infrastructure)	314	25	285	68	308	43	297	50	1204	186
7		Q3		Q5				•			
8	Physical effectiveness (Job satisfaction)	336	6	324	22					660	28
9		Q1		Q2		Q4		Q9			
10	Physical effectiveness (knowledge transfer)	319	26	322	23	328	21	323	19	1292	89
11		Q1	Q10		Q15						
12	Physical effectiveness (Fin- individual perception	319	17	319	24					638	41
13		a. Ex	b. Gd	c. Avg	d. NI	e. Pr					
14		CBM	CBM	CBM	CBM						
15	14/	4	3	2	1						
16	weightage			PPM	PPM	PPM					
17	7			1	3	4					
18	Sample Size : 103						CBM	РРМ			
19	Q1	33	51	16	2	1	319	26			
20	Q2	35	48	19		1	322	23			
21	Q3	35	64	2		1	336	6			
22	Q4	36	56	7	2	2	328	21			
23	Q5	34	55	11	1	2	324	22			
24	Q6	27	58	15	2	1	314	25			
25	Q7	25	51	8	16	3	285	68			
26	Q8	31	52	9	10	1	308	43			
27	Q9	31	59	11		2	323	19			
28	Q10	34	60	6	1	2	319	17			
29	Q11	25	55	10	12	1	297	50			
30	Q12	30	55	10	5	3	310	37			
31	Q13	29	60	10	1	3	317	25			
32	Q14	28	60	7	4	4	310	23			
33	Q15	30	59	10	2	2	319	24			
34								ĺ			
14 4	Noighting Top Mat Weighting CPN	1 On W	oighting	End Lloor	Charte 1	Fon Mat	Charte C	BM on	Charte End	lleor 📕	4

PEA Calculation End Users

60

PEA SUMMARY – END USERS

2000

1800

25

103

144

PEA SUMMARY – OVERALL

www.cmetsl.lk

CBM operators

End users

Total

CBM

PPM

CONCLUSION

CONCLUSION

- Effectiveness in paradigm transition from PPM to CBM
- Hybrid application
- Phases of CBM implementation
- Conceptual in-house evaluation mechanism
- Continual development and upkeep records
- Organisational support at all tiers is important

BIBLIOGRAPHY

- 1. Steven, William. Assessment of Condition Based Maintenance in the Department of Defense. Washington DC: US Department of Defense Publication. 2000.
- 2. Wright, Jeremy. *Making the Transition to Proactive Maintenance*. Noria Publication. 2016.
- 3. Blokdyk, Gerardus. *Condition-based Maintenance: Standard Requirements.* California: Create Space Independent Publishing Platform. 2018.
- 4. Mathew, Joseph. *Engineering Asset Management and Infrastructure Sustainability*. London: Springer. 2011.
- 5. Barron, Ron ed. Engineering Condition Monitoring: Practice, Methods & Applications. Essex: Longman. 1996.
- 6. Book of Reference No. 1 Maritime Doctrine of Sri Lanka. 2020
- 7. Mobley, Keith. An Introduction to Predictive Maintenance. Wuburn: Butterworth Heineman, 2002.
- 8. Plenert Gerhard. *Reinventing Lean, Introducing Lean Management into the Supply Chain.* Oxford: Elsevier. 2007.

9. Ali, Ahad & Abdelhadi, Abdelhakim. "Condition-Based Monitoring & Maintenance: State of the Art Review". *Appl. Sci.* 12 (2022): 688. https://doi.org/10.3390/app12020688.

- 10. Mobley, R. Keith. *An Introduction to Predictive Maintenance*. Woburn: Elsevier Science. 2002.
- 11. US Department of Defense (DoD) policy in DoD Instruction (DoDI) 4151.22. 2021.

12. Christiansen, Bryan. "Complete list of CM techniques." Last modified July 2, 2019. https://www.mromagazine.com/features/complete-list-of-conditionmonitoring-techniques/.

13. Reliabilityweb. "Why people do not understand PF curve". Accessed January 2,2022.https://reliabilityweb.com/articles/entry/why_people_do_not_understand_the_p-f_curve.

www.cmetsl.lk

65

BIBLIOGRAPHY

14. Wienker, Mike. Henderson, Keith. Volkerts, Jonathan. "The Computerized Maintenance Management System an Essential Tool for World Class Maintenance". *Procedia Engineering*. no.45 (2016): 216.

15. Wigren, Anna. "A Study on Condition-Based Maintenance with Applications to Industrial Vehicles". *Teknisk- naturvetenskaplig fakultet UTH-enheten. Uppsala University* (2017): 2.

- 16. Broadman, Antony & Greenberg, David. Cost Benefit Analysis- Concepts & Practice. Delhi: Pearson Education. 2006.
- 17. Weimer, David & Vining, Aidan. *Policy Analysis: Concepts & Practice*. New York: Routledge. 2017.
- 18. Salish, Mirjam. "Pareto Efficiency". Last modified March 9, 2020, https://inomics.com/terms/pareto-efficiency-1441708.
- 19. Hanley, Spash. *Cost-Benefit Analysis*. Aldershot: Edward Elgar Publishers. 1993.
- 20. Williams, John. Davie, Alan & Drake, Paul. Condition-based Maintenance & Machine Diagnostics. London : Chapman & Hal. 1994.
- 21. Sri Lanka Navy Orders (SLNO) 03, Engineering Orders No. 23, 2000.
- 22. SLN Engineering Database at NHQ
- 23. Asset Hierarchy Order Areva Oneprod Vibration Spectrum Analyser
- 24. Book of Reference No. 31 (Guidelines for Engineering Maintenance Transition) of SLN. 2021

25. Olugu, Zutah Udoncy, Wong, Kuan Yew, & Mammedov, Yslam. "Incorporating Sustainability & Maintenance for Performance Assessment of Offshore Oil & Gas Platforms: A Perspective". *Sustainability*, 14 (2022): 807.https://doi.org/10.3390/su14020807.

DYNAMIC TRANSITION TO CONDITION BASED MAINTENANCE PHILOSOPHY : A PROSPECTIVE ANALYSIS

Organised by: Marine, Hull, Chemical and Process Engineering, Material Science and Naval Architecture Sectional Committee

Q & A Session

DYNAMIC TRANSITION TO CONDITION BASED MAINTENANCE PHILOSOPHY : A PROSPECTIVE ANALYSIS

Organised by: Marine, Hull, Chemical and Process Engineering, Material Science and Naval Architecture Sectional Committee

Thank You.